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Abstract 

In order to introduce more flexibility in calibration, the bundle adjustment 
approach is introduced for Stereo PIV systems in Scheimpflug condition. The 
calibration target  is positionned by hand front of the video-cameras at different 
locations in space. From the multiple views of the calibration target, the 
parameters of the video-cameras with both the target locations and the 3D 
calibration points are estimated by non linear least mean squares. In the proposed 
calibration procedure, the laser plane equation is determined by searching for the 
homography between the image planes. The ability of the procedure for self-
calibrating two f=50 mm video-cameras and recovering the equation of the 
measurement plane is experimentally tested. 

1. Introduction 

Stereo Particle Image Velocimetry technique (SPIV) enables instantaneous 
velocity field measurements in various situations. Whatever are the stereoscopic 
set-up and the possible optical interfaces, the evaluation of the three velocity 
components in a section of the flow is based on the function mapping any 3D 
location to its image. The mapping function modeling one video-camera is 
classically a polynomial function (Van Oord 1997) or an homographic one (Raffel 
et al. 1998) whose parameters are recovered at the calibration stage from 3D well-
known points and their correspondences in the image plane. Usually a known flat 
grid is placed in the median plane of the light sheet and accurately moved to 
different locations parallel to the light sheet (Soloff et al. 1997). At each location, 
images of the grid are recorded. Such a calibration method may be unstable 
relative to non parallel and not equally spaced target locations, especially in 
internal flows (e.g. pipe flow). It is the reason why (Quénot et al. 2001) proposed 
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a method using a single image of a dot grid target to calibrate a PIV video-camera 
with the focal length and sensor pixel pitches as additional information. Nowadays 
multi-level targets on which different z-positions are present are available for the 
special case of SPIV calibration (Naqwi 2000). Such an object has to be accurately 
defined and carefully handled during and after the experiment. In addition, a series 
of 3D calibration targets is required to inspect a large range of fields, from 
microPIV fields to aerodynamics ones.  

The aim of this article is to obtain an easier PIV calibration protocol by hand-
positioning a printed flat calibration target. In computer vision, such a self-
calibration based on the bundle adjustment techniques (Lavest et al. 1998, Triggs 
et al. 2000) already works in applications using a zoom (Li and Lavest 1996, De 
Agapito et al. 2001) or inspections with a very short focal length. In this multi-
plane and photogrammetrical approach described in section 2, one requires neither 
a remote control translation nor an accurate calibration target : the video-camera 
intrinsic parameters and the calibration target geometry are recovered 
simultaneously. In section 3, we propose two intrinsic models consistent with the 
specific case of the Scheimpflug condition used in the SPIV angular method. The 
problem of misalignment is tackled in section 4 where the localization of the laser 
plane is carried out in the calibrated stereo device coordinate system. Compared to 
other work on the topic (Riou 1999, Bjorkquist 1998, Coudert and Schon 2001), 
we propose to determine the homography between both image planes when 
imaging the laser plane. In order to validate the approach and to assess its 
precision, displacements of the flat dot grid used for the self-calibration of two 

 video-cameras in Scheimpflug condition were measured (section 5). 
The ability of the laser plane localization method has been tested on a target with a 
printed random dot pattern.  

mmf 50=

2. The bundle adjustment approach 

2.1. Self-calibration from multiple images 

The bundle adjustment technique is a least mean square method used in 
computer vision for self-calibrating video-cameras from a calibration target. This 
technique is based on a multi-image scheme leading to a highly over-determined 
non-linear system and a reliable estimation of both the intrinsic parameters of the 
video-cameras and the 3D calibration points. In such a photogrammetric approach, 
extrinsic parameters giving the localization of one video-camera, are distinguished 
from the intrinsic parameters.  
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Fig. 1.  The pin-hole camera model, image geometry and coordinate systems. 

Let us consider the pin-hole model depicted in figure 1 where the convention of 
the painter has been adopted (i.e. the image plane is placed front of the projection 
centre in order to work with a positive value for magnification). This is a 
simplified model of the left (or the right) video-camera assumed to work 
according to a perspective projection. To first order, the relationship between a 3D 
point given in the reference coordinate system W XYZ−  and its image in the 
video-camera coordinate system C XYZ−  is described by the following 
equations :  
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(2.1) 

where is the distance separating the projection centre from the image plane 

(denoted 

p′

p′  in figure 1), ( )ijr=R  and ( )Tzyx ttt ,,=t are respectively the 
rotation matrix and the translation vector between the world and video-camera 
coordinate systems. By eliminating in (2.1) the scale factor λ  which maps the 3D 
point to its image, one obtains the following so-called collinearity equations :  
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By taking into account distortions ( )yx δδ , , the coordinates ( )yx,  are 

transformed into the pixel coordinate ( )vu,  as follows :  
( )
( )dyvvyy

dxuuxx

v

u

0

0

−+=+
−+=+

εδ
εδ

 (2.3) 

where vu εε ,  are the errors on the image location ( )vu,  measured in the pixel 

array,  are the pixel coordinates of the intersection between the optical 

axis and the image plane,  the pixel sizes. Distortions are usually divided 
in two parts, on one hand the radial distortions given by the parameters 

, on the other hand the tangential ones given by the parameters  
(ASP 1984) :  
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where 
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ppx
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Substituting (2.3), (2.4) and (2.5) into (2.2), the measurement errors can be 
expressed as  
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where  is the vector of unknown parameters. The vector  is estimated by 

minimizing the sum 

Φ Φ
( )22

1 iviu
n
i εε +∑ =  from the  points n ( ) niiii ZY ,,1,, K=X  

of a flat calibration grid and their images ( )i 1= nii vu ,,, K  localized in the pixel 

array.  At this stage, the parameter vector Φ  consists of intrinsic and extrinsic 
parameters of the video-camera. By looking at (2.4), (2.5), (2.6) and by keeping in 
mind that a perspective projection is always defined within a scale factor, the 
image distances  and xp′ yp′  appear as intrinsic parameters. The image centre 

coordinates ( )0,v0u  and the optical distortion parameters a  
are the other ones. The extrinsic parameters are the three independent rotation 
angles of the rotation 

2132 ,,,, ppaa1

R  (α rotating around X -axis, β around Y -axis, and γ  

around Z -axis) and the translation vector ( )Tzx tt ,=t yt, . Thus, the parameter 

vector, denoted here Φ , is  69+

( )T
zyxyx tttppaaappvu ,,,,,,,,,,,,,,Φ 213210069 γβα′′=+  

One major source of calibration errors is the result of measurement errors. 
These errors can be located on the 3D coordinates of the calibration target points 
but also on the localization of their correspondences in the image plane. One way 
to improve this is to combine more than one image taken by the same video-
camera but from  different views (after rotation given by Euler’s angles 

 and/or translation given by 

m
( ) ( ) ( )kkk γβα ,, ( ) ( ) ( )k

z
k

y
k

x tt ,,t ). In such a case, 
the intrinsic parameters remain the same for all the images and the calibration task 
means computing the following parameter vector : 
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It has been proved that measurements with a subpixel accuracy (2/100 pixel) can 
be obtained with special patterns like crosses or dots. In that case, the major 
source of calibration errors relies on calibration patterns.  

High quality calibration patterns are difficult to achieve. They have to be 
mechanically stable in time (compared with the temperature change) or to be 
moved very accurately to insure an euclidian reference frame without bias.  

Taken into account this point of view, it has been demonstrated that it is 
possible inside a multi-image calibration approach to estimate the calibration point 
coordinates together with the intrinsic and extrinsic calibration parameters.  

The new parameter vector to be determined, if the coordinates ( ) ( ) (iii ZYX ,, )  
of the  calibration points have to be estimated with the traditional calibration 
parameters, takes the following form:  

n
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where  represents the total number of target points and  the total number of 
images taken during the calibration stage.  

n m

Figure 2 shows the classical set of views used during calibration. The video-
camera is rotated around the target to insure a cone of observation views and 
introduce geometrical constrains in the 3D computation of calibration points. Note 
that rotating the camera around the object is identical to rotate the object around a 
fixed camera.  

  

Fig. 2. Classical camera geometry during self-calibration sequence. 

2.2. Solving the Problem 

The errors uε  and vε  being non-linear functions of Φ , the minimization of 
(2.6) is a non-linear optimization problem. One way of solving the problem is to 
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linearize (2.6) with some initial value Φ  and solve for . The solution is 

then obtained by adding   to Φ  as the new initial value and repeating the 
process until a certain convergence is satisfied.  

0

∆Φ

∆Φ
∆Φ

V

0

A+=

)0Φε∇=

( )WV

  

VT
n

ained as:

( )

min
69∆Φ +ℜ∈

e o

(AT1
WA

−
AT=

( ) A1−WA

0

AA+

σ

r−
WV

N

TV2
0σ̂

) 1−
WA=CΦ AT

iΦ

iici
2σ̂ 2

0σ̂

Given  3D points and their corresponding 2D image points in  views, we 
can write the  linearized measurement or error equations in matrix form:  

n m
n×2

L  (2.8) 

with ( )0ΦεL =  and (A . 
 
Let the weight matrix of the measurements be W , the least squares solution to 

(2.8) is a minimization problem of  

3m+
 (2.9) 

The solution to (2.9) can b bt

)WL∆Φ  (2.10) 

 
From the least square estimate of (2.8) and (2.9), we can compute the estimate 

of the residual vector V  as  

( )LWIV̂ TT=  (2.11) 

the estimate of the so called standard error of unit weight, which is the a posteriori 
estimate of the standard deviation  of the noise on the image coordinates if the 
model is correct and there are no system errors:  

=  (2.12) 

and the estimate of the covarianc  matrix of the parameters Φ  :  e

(  (2.13) 

 
For each individual parameter , we can then compute the estimate of its 

precision, or the standard deviation:  

=  (2.14) 

 
In order to assure algorithm convergence, the calibration vector set as initial 

value has to be not too far from the solution. In the final experimental results, we 
will show that this initial value is not really difficult to obtain, and that a good 
convergence can be achieved if the calibration views of the pattern are taken from 
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different orientation observations. This is equivalent to insuring very constrained 
triangulation angles in space for the 3D point reconstruction. As underlined in 
(Brown 1971), we have noticed that multiple views taken with a ±  45 degree 
rotation around the object leads to a better estimate (better convergence and better 
accuracy) of the calibration parameters.  

 
Since the 3D coordinates of the calibration points are simultaneously estimated 

with the calibration parameters, the extrinsic geometry of the vision system is 
determined up to a scale factor. Actually, in these conditions the reconstruction of 
a bigger calibration pattern observed from a farther distance will provide an 
identical image. This loss of metric dimensions does not have great consequences 
on a single video-camera calibration. Key information for further application tasks 
are only contained in the intrinsic parameters. Let us recall that extrinsic 
parameters give the 3D location of the calibration pattern, expressed in the video-
camera frame, and in accordance with a given view of the image set. In order to 
calibrate with two (or more) video-cameras, it will be necessary to introduce a 
metric dimension to fix the extrinsic geometry of the video-camera configuration. 
Such a task can easily be performed with the accurate knowledge of the Euclidian 
distance between only 2 points among , or the absolute length of a translation 
between two views.  

n

3. Scheimpflug model 

In angular SPIV, each sensor is tilted according the Scheimpflug condition in 
order to focus on the laser plane with a low aperture number (Hinsch et al. 1993, 
Prasad and Jensen 1995). The Scheimpflug condition is obtained as the planes 
supported by the sensor respectively the lens intersect with the laser plane in a 
common line. It is depicted in figure  3 with the "painter convention". As sensors 
are no longer orthogonal to the optical axis, optical distortions are no more 
isotropic with respect to the image centre.  

 
The general expression for the image coordinates can be obtained by projecting 

the distorted image coordinates ( ) ( )( )pyxxyyyxxx ′++ ,,,, δδ  in the front 
image plane onto the tilted image plane :  
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(3.1) 

where the Scheimpflug rotation  defines the rotation from the video-
camera coordinate system to the tilted image plane coordinate system. 

SchR
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Fig. 3. Scheimpflug condition according to the "painter convention" (the "image" plane is 
placed front of the projection centre by symmetry of the optical image plane with respect to 
the projection centre).  

When the distortions and measurement errors due to the sub-pixel pattern 
detector are of the same order of magnitude, the Scheimpflug rotation is 
compensated with the extrinsic rotation that defines the object plane position in 
the video-camera frame. According to a perspective point of view, this is not a real 
problem. Indeed calibration defines the sensor and the object in space, and in that 
case the classical projection scheme has to be choosen.  

Remember that no accuracy is required both in the flat calibration target 
definition and in its displacement, because all these parameters will be estimated 
during the non linear optimization. In section 5 we will use a planar calibration 
object printed by a laser printer and manually moved to create the set of images.  



10      T. Fournel , J.-M. Lavest , S. Coudert , F. Collange 

4. Laser plane equation 

After calibration of the stereo system, the rigid transformation ( )StR ,S
thi

 from 

the second video-camera coordinate system to the first one for the  view is 
given by :  
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Fig. 4. Homography transformation between images when viewing the laser plane. 

Let us assume that the optical distortions are corrected. As the projections are 
perspective ones, there exists a pure homography transformation H  between 

points  (of pixel homogeneous coordinates ( )1x ( ) ( ) ( )( )Tvu 1,, 11=1u
( ) ( )

) and  

(of pixel homogeneous coordinates 

( )2x
( ) ( )Tvu 1,, 22=2u ) (Hartley and 

Zisserman 2000) :  
( ) ( )12 uHu =s  (4.2) 
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where H  is a 3 by 3 matrix defined with only 3 unknown parameters and a 

scalar introduced in order to normalize the third component of 

s
( )2u . In fact, the 

image  is the image of the back-projection of  (2u ) ( )1u  on the laser plane. The 
laser plane being defined by the distance d  from the first projection centre and by 

the normal vector , the homography ( T
zy nnn ,,xn = ) H can be expressed as : 
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(4.3) 

The purpose is to find the three unknowns ( ) n
d

cba T 1,, =  which leads to 

the laser plane equation. The solution ( )Tcba ~,~,~  can be obtained by minimizing 

the sum where  is the deviation vector between the measured 

position 

∑ =
mn

i i
T
i

2
1 εε iε

( )2
iu  (corresponding to the ith measured position ( )1

iu ) and the current 

value ( )1
,, icba uH1

s
. 

5. Experimental results 

The method proposed for SPIV self-calibration has been applied on a pair of 
1024 × 768 1/2" CCD cameras mounted on the Scheimpflug devices designed by 
the Laboratory of Mechanics of Lille (France) in the frame of the Europiv 2 
project. The CCD cameras were equipped with f=50mm lenses focused on the 
measurement plane with a distance of  500 mm and viewing it at 45°. For self-
calibration, we have a total number of 9+6m+3n unknown parameters (included 
intrinsic and extrinsic parameters and also calibration point coordinates from 
(2.7)) for 2mn equations. By using 25 calibration dots on a flat support observed 
from 8 views i.e. 400 measurements for 132 unknown parameters, the system to 
be solved is clearly redundant. The views are taken by hand-positioning the flat 
calibration target according to very different orientations (± 45°) in order to better 
estimate the calibration parameters. 
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The Scheimpflug video-cameras have been self-calibrated according to a 
classical projection scheme (section 3) as distortions appeared negligible in 
displacement measurements carried out in this experiment. The coordinates of the 
image centre are (498,320) pixel in frame 1 and (680,570) pixel in frame 2. The 
values of xp′  and (maintained equal as pixels are square) are 8206 pixel for 
video-camera 1 and 8210 pixel for video-camera 2. They corresponds to an object 
distance of 470 mm. The rigid transformation of the stereo device   
(which allows to pass from the second video-camera coordinate system to the first 
one) is given on table 1. The calibration parameter vector has been obtained with 
absolute residuals less than 0.04 pixel. 

yp′

( )StR ,S

Table 1.  Rigid transformation of the stereo device. 

α β γ tx ty t z 
+68.42° +86.82° +69.72° -499.56 mm -26.55 mm +467.74 mm 

Table 2.  Translation measurements in translation motion. 

α (°) β (°) γ (°) tx (mm) ty (mm) tz (mm) Angle (°) Magnitude 
(mm) 

0.0011 0.0016 -0.0002 0.9992 0.0145 -0.0145 0.0019 0.9994 
0.0009 0.0003 0.0000 1.0012 0.0143 -0.0158 0.0010 1.0014 
0.0001 0.0007 -0.0001 0.9993 0.0151 -0.0163 0.0007 0.9995 
-0.0001 0.0011 0.0003 0.9987 0.0144 -0.0144 0.0011 0.9990 
0.0013 0.0014 0.0003 0.9975 0.0141 -0.0132 0.0019 0.9977 
0.0016 0.0018 0.0002 0.9989 0.0144 -0.0143 0.0024 0.9991 
0.0005 0.00155 0.0006 0.9974 0.0142 -0.0148 0.0017 0.9976 
0.0005 0.0016 -0.0003 0.9996 0.0144 -0.0140 0.0017 0.9998 
0.0005 0.0012 0.0005 1.0004 0.0141 -0.0142 0.0014 1.0006 
-0.0003 0.0017 -0.0001 1.0016 0.0144 -0.0158 0.0017 1.0018 
0.0011 0.0007 -0.0001 0.9990 0.0151 -0.0156 0.0013 0.9992 
0.0001 0.0013 0.0002 0.9996 0.0142 -0.0143 0.0013 0.9998 
0.0012 0.0022 0.0003 0.9980 0.0140 -0.0130 0.0026 0.9982 
0.0007 0.0010 0.0005 0.9984 0.0141 -0.0137 0.0013 0.9986 
0.0005 0.0014 0.0001 0.9982 0.0142 -0.0145 0.0015 0.9984 
0.0004 0.0010 0.0004 0.9997 0.0140 -0.0140 0.0012 0.9999 
0.0006 0.0011 0.0000 1.0018 0.0142 -0.0132 0.0013 1.0020 
0.0003 0.0002 -0.0006 1.0011 0.0145 -0.0139 0.0007 1.0013 
Mean       0.9996 

Deviation       0.0013 
 
In order to assess the precision of this calibration, the flat calibration target was 

mounted on remote control stages. The target was first translated along the 
horizontal X-axis in the object plane with a 1 mm step and secondly rotated around 
the Y-vertical axis by -0.5° steps. For each location, the position of each dot was 
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measured by the self-calibrated stereo device using the sub-pixel pattern detector 
then the target plan localised. The rotation-translation transformation between the 
kth and (k+1)th positions of the target expressed in the kth target coordinate system 
is reported in table 2 for the translation motion (20 samples) and in table 3 for the 
rotation motion (8 samples). The motions have been recovered within 2 µm for the 
translation and within 0.003° for the rotation, which agrees with the resolution of 
the remote control stages. 

 

The method proposed in section 4 for recovering the laser plane equation has been tested on 
a randomly-printed paper sticked on a CD-ROM by way of support and positioned in front 
of the calibrated stereo device. The method applied on the whole images of the stereo pair 
gave the equation of the support plane in 31 iterations. Figure 5 shows the ability of the 
method which has detected a small bump at the location of the central hole of the CD-
ROM. 2225 points defined in frame 1 were matched with their corresponding points in 
frame 2 by correlation. Afterwards the corresponding 3D points were reconstructed by 
triangulation (in the coordinate system of video-camera 1). The mean distance of the 3D 
points from the recovered plane is less than 7 µm and the standard deviation equal to 93 
µm. 

Table 3.  Displacement measurements in rotation motion. 

α (°) β (°) γ (°) tx (mm) ty (mm) tz (mm) Angle (°) Magnitude 
(mm) 

0.0082 -0.4970 0.0048 -0.1842 0.0003 -0.2566 0.4971 0.3158 
0.0080 -0.5003 -0.0059 -0.1831 0.0006 -0.2570 0.5004 0.3156 
0.0088 -0.5026 -0.0070 -0.1832 0.0007 -0.2578 0.5028 0.3163 
0.0080 -0.4983 -0.0077 -0.1805 0.0005 -0.2548 0.4984 0.3122 
0.0048 -0.5015 -0.0050 -0.1851 0.0007 -0.2604 0.5015 0.3195 
0.0075 -0.5011 -0.0058 -0.1838 0.0005 -0.2587 0.5012 0.3173 
0.0071 -0.5038 -0.0067 -0.1843 0.0006 -0.2593 0.5039 0.3181 
Mean      0.5008  

Deviation      0.0022  

6. Conclusion 

We have demonstrated that the calibration of an angular Stereo PIV system in 
Scheimpflug condition can be performed by hand-positioning a paper-printed 
target and recording a set of views. After detecting the target marks in the views, 
an optimal pin hole model is searched for as the same time than the localization of 
the views and the coordinates of the marks on the target by non linear least mean 
square. We showed that the misalignment problem can be solved by searching for 
the homography between the two image planes when viewing the measurement 
plane. Such a protocol has been evaluated in air on synthetic objects. 
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After self-calibrating the experimental set-up, displacements were measured 
within a precision close to the resolution of the remote control devices used in 
multi-plane calibration. The method proposed for the recovery of the measurement 
plane equation allowed to detect a bump of a few of micrometers. The redundancy 
for self-calibrating can be increased by replacing the localization of the second 
video-camera by the rigid transformation of the stereo device. The proposed 
protocol has now to be validated in presence of interfaces. The approach will be 
worth seeing in telecentric configuration which has been studied in the frame of 
the Europiv 2 project (Fournel et al. 2003). 

 

 
Fig. 5.  Vectors from the recovered plane to the measured points over-printed 

on the random pattern (equation of the paper plane  recovered in the coordinate 
system of video-camera 1 : 0.7005X-0.0224Y-0.7134Z+347.09=0). 
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